Pandit Deendayal Petroleum University

School of Technology

20SC102P					Engineering Physics Practical					
Teaching Scheme					Examination Scheme					
L	т	Р	с	Hrs/Week	Theory			Practical		Total
					MS	ES	IA	LW	Viva	Marks
0	0	2	1	2	-	-	-	50	50	100

COURSE OBJECTIVES

- **D** To understand the working of various electrical, mechanical and optical instruments in the laboratory.
- **To gain practical knowledge in Physics through experiments.**
- **To understand basics concepts of Physics and be able to apply in performing the experiments.**

List of Experiments

- 1. Introduction to Oscilloscope.
- 2. Study of Interference using Newton's Ring experiment.
- 3. Determination of thermal conductivity of different solids.
- 4. Experiment with solar collector.
- 5. Experimental to determine linear thermal expansion coefficient of solid bodies.
- 6. Experiment on reflection of Ultrasonic waves.
- 7. Experiments with heat pump.
- 8. Determining Plank's constant and Inverse square law.
- 9. Experiments on diffraction with He-Ne Laser Kit.
- 10. Study of Hall Effect.
- 11. Determining semiconductor energy band gap using four probe method.
- 12. Experiment to study forced oscillations.
- 13. Study of charging and discharging of capacitive plates.
- 14. Study of Bio-Savart's Law
- 15. Experiments on Fiber Optics.
- 16. Study of Photoconductivity.
- 17. Determining e/m by Thomson's method.
- 18. Study of Polarization of light using LASER.
- 19. Millikan's oil drop experiment.
- 20. Study of Holography.

** Any 10 experiments will be conducted relevant to theory course.

COURSE OUTCOMES

On completion of the course, the students will be able to

- CO1 Apply and analyze the concepts of electricity and magnetism.
- CO2 Understand the interaction of light waves and its propagation in different media.
- CO3 Demonstrate and implement the phenomenon of resonance
- CO4 Investigate the electrical properties of a given semiconductor device
- CO5 Examine the charge transport mechanism in different conductors
- CO6 Design and analyze the light propagation for communication application using fibre optics

TEXT/REFERENCE BOOKS

- 1. Ghatak, Optics, 3rd edition, Tata McGraw Hill (2005).
- 2. Kittel, Knight and Ruderman, Mechanics Berkeley Physics Course, Vol. 1, Tata McGraw-Hill.
- 3. Avadhanulu, A text book of engineering Physics, S. Chand & Company, Ltd.
- 4. Brij Lal, N. Subrahmanyam, Heat and Thermodynamics, S. Chand & Company, Ltd
- 5. Halliday, Resnick, Walker, Fundamentals of Physics (Wiley)

Evaluation